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Improved outcome prediction in acute 
pancreatitis with generated data and 
advanced machine learning algorithms
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Abstract:
OBJECTIVES: Traditional scoring systems have been widely used to predict acute pancreatitis (AP) 
severity but have limitations in predictive accuracy. This study investigates the use of machine 
learning (ML) algorithms to improve predictive accuracy in AP.
METHODS: A retrospective study was conducted using data from 101 AP patients in a tertiary 
hospital in Türkiye. Data were preprocessed, and synthetic data were generated with Gaussian 
noise addition and balanced with the ADASYN algorithm, resulting in 250 cases. Supervised ML 
models, including random forest (RF) and XGBoost (XGB), were trained, tested, and validated 
against traditional clinical scores (Ranson’s, modified Glasgow, and BISAP) using area under the 
curve (AUC), F1 score, and recall.
RESULTS: RF outperformed XGB with an AUC of 0.89, F1 score of 0.82, and recall of 0.82. BISAP 
showed balanced performance (AUC = 0.70, F1 = 0.44, and recall = 0.85), whereas the Glasgow 
criteria had the highest recall but lower precision (AUC = 0.70, F1 = 0.38, and recall = 0.95). Ranson’s 
admission criteria were the least effective (AUC = 0.53, F1 = 0.42, and recall = 0.39), probable 
because it lacked the 48th h features.
CONCLUSION: ML models, especially RF, significantly outperform traditional clinical scores in 
predicting adverse outcomes in AP, suggesting that integrating ML into clinical practice could improve 
prognostic assessments.
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Introduction

Acute pancreatitis (AP) is a serious and 
sudden inflammatory condition of 

the pancreas, often leading to significant 
abdominal emergencies. Although most 
cases of AP are self‑limiting, approximately 
one‑fifth develop severe AP, which can lead 
to a mortality rate of up to 30%.[1] Therefore, 
accurate severity prediction is essential for 
anticipating outcomes.

Over the years, various scoring systems 
have been developed to predict the severity 
of AP.[1,2] Ranson’s criteria, one of the oldest 
and most widely used systems, has been 
extensively validated, followed by the 
Glasgow‑Imrie criteria and its modified 
versions.[3‑5] The Acute Physiology and 
Chronic Health Examination (APACHE) 
II, a complex score which was originally 
developed to estimate intensive care 
unit (ICU) mortality, has been extensively 
used for AP severity prediction due to its 
ability to be calculated at any time during a 
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patient’s hospital stay, often outperforming older ones.[6‑8] 
The Bedside Index of Severity in AP (BISAP), developed 
more recently, offers similar advantages to APACHE II 
by eliminating the need for a 48‑h interval. The BISAP 
score has less variables which are cost‑effective and can 
be done in emergency setting.

Recently, there has been increasing interest in 
using machine learning (ML) models to improve 
predict ive accuracy in emergency medicine, 
including for the prognosis of AP, where early 
studies have shown superior performance compared 
to traditional scoring systems.[9,10] This study aims to 
demonstrate how ML, combined with innovative data 
augmentation techniques, can significantly improve 
prognostic models in AP, comparing traditional 
scoring systems.

The study aims to identify more effective prognostic 
markers in AP and prove their efficacy by comparing 
them with existing classical risk scoring systems. 
Thus, it is aimed to be able to determine outcomes 
such as intensive care admission or death at an early 
stage.

Methods

Study design and definitions
This study is a single‑center, retrospective cohort study. 
Data from patients diagnosed with AP in a tertiary 
emergency department in Turkey between January 
2018 and September 2022 were used. Inclusion criteria 
required data matching at least two of the following: (1) 
characteristic abdominal pain, (2) serum pancreatic 
enzyme levels at least three times the normal upper 
limit (pancreatic amylase >159 U/L and lipase >201 U/L), 
and (3) characteristic findings of AP on contrast‑enhanced 
computed tomography (CT) scans. Patients with missing 
data required for traditional scoring systems and patients 
with unknown outcomes who could not be followed up 
in the hospital were excluded from the study. A sample 
size was not calculated for the study, and all patients 
who met the criteria during the specified period were 
included in the study.

Detailed medical histories were collected, including 
comorbidities, previous episodes of pancreatitis, 
symptomatology, admission vitals, arterial blood gas 
analysis, hematocrit, biochemistry, complete blood 
count studies, baseline and longitudinal measurements 
of amylase, lipase, and pancreatic amylase levels as 
well as coagulation parameters and cardiac enzymes. 
The trajectories of the subsequent measurements of 
pancreatic enzymes were also analyzed through percent 
change and average real variability calculations as 
formulated below:
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The BISAP score, modified Glasgow criteria, and 
Ranson’s admission criterion were calculated from 
the data. AP severity was graded according to the 
revised Atlanta classification. Local complications were 
identified from radiology reports.

Dates of discharge, ward and ICU hospitalizations, 
or death were recorded. The composite outcome of 
ICU admission and/or death was chosen based on 
its practical relevance in emergency medicine, where 
physicians must rapidly identify high‑risk patients and 
make timely decisions regarding their care. This binary 
classification of adverse outcomes reflects the critical 
needs of real‑world clinical settings, where time‑sensitive 
decisions regarding patient disposition are essential.

Preprocessing data
The preprocessing involved removing noisy, 
duplicate, or incomplete records, resulting in 
101 cases. Missing data were imputed using random 

Box‑ED section
What is already known about the study topic?
• Traditional scoring systems are commonly used 

to predict severity in acute pancreatitis but have 
limitations in predictive accuracy.

How is this study structured?
• This retrospective study analyzed data from 101 

acute pancreatitis patients. Tree‑based ensemble 
methods were trained and tested on generated 
data and validated on the original dataset to assess 
their predictive accuracy against traditional scoring 
systems.

What does this study tell us?
• The study found that the random forest and XGBoost 

classifier models significantly outperformed 
traditional clinical scores in predicting adverse 
outcomes in acute pancreatitis. Key predictive 
features identified included serum glucose, lactate, 
albumin, blood urea nitrogen (BUN), and age.

What is the conflict on the issue? Is it important for 
readers?
• While traditional scoring systems are widely used 

due to their simplicity, they may oversimplify risk 
assessments, potentially leading to less accurate 
predictions. This study highlights the need for 
incorporating advanced ML models into clinical 
practice to improve the accuracy of severity 
predictions, ultimately leading to better patient 
outcomes.
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forest (RF) techniques, and skewed data were 
normalized to a range of −1 to 1. To address the 
dataset’s imbalance and limited case numbers, data 
generation was employed, resulting in a synthetic 
dataset of 250 cases. New data points were created 
by selectively adding Gaussian Noise to continuous 
variables, carefully calibrated to resemble the 
original data while introducing slight variations 
for diversity. To further balance the dataset, the 
ADASYN (Adaptive Synthetic Sampling) algorithm 
was applied, focusing on difficult‑to‑learn examples 
to reduce bias. The final dataset achieved a 65:35 
balance between majority and minority classes, chosen 
to preserve data authenticity while avoiding excessive 
artificiality. Each step of synthesis and balancing was 
carefully monitored through heat maps, principal 
component analysis (PCA), summary statistics, and 

manual adjustments to ensure the generated data were 
realistic and representative [Figure 1].

Model development and validation
Supervised ML models were developed using tree‑based 
ensemble methods, namely random forest (RF) 
and XGBoost (XGB), known for their robustness in 
classification tasks. RF was chosen for its ability to 
handle high‑dimensional data, while XGB was selected 
for its gradient boosting feature, which sequentially 
builds models to correct errors, leading to high accuracy. 
XGB also includes regularization parameters to prevent 
overfitting.

Feature selection was performed before training to 
avoid computational exhaustion and identify the most 
informative features. Information gain, RF, and logistic 
regression analyses were used for feature selection. 

Figure 1: Heat maps and principal component analysis plots. The left side represents the original data set and the right side represents the generated data set
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After feature selection, hyperparameter tuning was 
conducted using RandomizedSearchCV, identifying 
optimal parameters for RF (n_estimators = 100, min_
samples_split = 5, min_samples_leaf = 1, max_depth = 10) 
and XGB (subsample = 0.8, n_estimators = 200, max_
depth = 3, learning_rate = 0.1), which were trained on 
70% of the generated data, with 30% reserved for testing. 
Validation on the original dataset compared model 
performance metrics (area under the curve [AUC], recall, 
F1) against traditional clinical scores (Ranson’s admission, 
modified Glasgow, and BISAP). Metrics such as positive 
predictive value, negative predictive value, and accuracy 
were not used, as they may provide a skewed picture in 
imbalanced datasets, where a high accuracy can still result 
in poor performance in identifying minority class events. 
“SHAP (SHapley Additive exPlanations) values” were 
plotted to highlight feature importance, enhancing the 
transparency of model decisions.

Descriptive analyses were performed before the 
normalization and generation of the data, and due 
to the relatively small sample size and skewed data, 
non‑parametric tests (Mann‑Whitney U for continuous 
variables and Chi‑square or Pearson’s test for categorical 
variables) were employed for statistical comparisons. All 
statistical analyses, data‑mining, and ML coding were 
performed using Python (v3.12.5), utilizing packages 
such as pandas, scikit‑learn, XGB, and SHAP.

Ethical approval for this study was obtained from 
Hacettepe University Ethics Committee in Turkey on 
the date of December 27, 2022, with approval number 
of GO 22/1317.

Results

Descriptive statistics
This cohort primarily consisted of middle‑aged adults, with 
a slightly higher representation of male patients [Table 1]. 
A significant sex disparity was noted, with a higher 
proportion of females in the adverse outcome group (29.3%) 
compared to the total cohort (19.8%) (P = 0.048), while age 
differences were not statistically significant. The recurrence 
of pancreatitis and biliary origin showed no significant 
variation between groups. Most patients presented with 
acute edematous pancreatitis, and CT findings were 
comparable across groups.

Notably, certain comorbidities, including congestive 
heart failure, dysrhythmia, chronic kidney disease, 
and active cancer, were more prevalent in the adverse 
outcome group. These patients also exhibited more 
severe clinical presentations, as reflected by higher 
Glasgow and BISAP scores. In addition, this group had 
significantly lower oxygen saturation (SpO2, P = 0.015), 
higher respiratory rates (P = 0.001), and a greater 

incidence of fever (P = 0.005) and dyspnea (P = 0.005), 
indicating a more critical initial state. Although the 
sample size is limited, there was a trend toward more 
severe pancreatitis and local complications, such as 
acute necrotic collections and walled‑off necrosis, in the 
adverse outcome group.

Significant laboratory differences included higher 
blood urea nitrogen (BUN) levels (P = 0.06), lower 
albumin (P  = 0.08), and higher initial glucose 
levels (P = 0.01) in the adverse outcome group [Table 2]. 
Elevated troponin (P = 0.03) and D‑dimer (P = 0.046) 
levels suggested myocardial stress and a hypercoagulable 
state, respectively. In addition, this group had lower 
pO2 (P = 0.04), pCO2 (P = 0.04), and bicarbonate 
levels (P = 0.038), indicating respiratory compromise 
and metabolic acidosis, while elevated lactate (P = 0.005) 
pointed to tissue hypoxia. Interestingly, neither 
pancreatic enzyme levels nor their trajectories showed 
significant differences across outcome groups.

Supervised machine learning models
Initial feature selection included “fever,” “troponin,” 
“lactate,” “glucose,” “albumin,” “BUN,” “age,” and 
“CKD.” However, “fever,” “troponin,” and “CKD” were 
later excluded due to minimal predictive contribution. 
As a result of ML, the top ranking features of prognostic 
were “lactate,” “glucose,” followed by “BUN,” and “age.”

The RF model demonstrated superior performance 
across key metrics, with an AUC of 0.89, F1 score of 0.82, 
and recall of 0.82, outperforming the XGB model, which 
still exhibited competitive performance (AUC = 0.85, 
F1 = 0.77, and recall = 0.77). To benchmark these models, 
traditional clinical scoring systems – BISAP, modified 
Glasgow, and Ranson’s admission criteria – were 
evaluated on the original dataset, with thresholds 
adjusted to optimize recall and specificity.

Figure 2: Receiver operating characteristic curves for machine learning models 
and clinical scores
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Table 1: Baseline clinical characteristics of the cohort stratified by outcome group
Total, n (%) No event, n (%) Adverse event, n (%) P

Total cohort 101 (100) 81 (80.2) 20 (19.8)
Demographics

Female sex 41 (40.6) 29 (70.7) 12 (29.3) 0.048
Age (median/IQR) 53 (27) 52 (27) 58.5 (28) 0.13

Features and classification
Recurring pancreatitis 23 (22.8) 21 (91.3) 2 (8.7) 0.13
Origin

Biliary pancreatitis 48 (47.5) 39 (81.3) 9 (18.8) 0.8
Nonbiliary pancreatitis 53 (52.5) 42 (79.2) 11 (20.8)

Pleural effusion 3 (100) 1 (33.3) 2 (66.7) 0.1
CT classification

Acute edematous pancreatitis 69 (68.3) 54 (78.3) 15 (21.7) 0.42
Necrotizing pancreatitis 5 (5) 3 (60) 2 (40)
Infected pancreatic necrosis 1 (1) 1 (100) 0
Nonsignificant findings 26 (25.7) 23 (88.5) 3 (11.5)

Comorbidities and medication history
Diabetes mellitus 23 (22.8) 17 (73.9) 6 (26.1) 0.4
Arterial hypertension 34 (33.7) 24 (70.6) 10 (29.4) 0.08
Coronary artery disease 11 (10.9) 9 (81.8) 2 (18.2) 0.8
Congestive heart failure 5 (5) 2 (40) 3 (60) 0.05
Dysrhythmia 4 (4) 1 (25) 3 (75) 0.024
Chronic kidney disease 5 (5) 2 (40) 3 (60) 0.05
History of malignancy 9 (8.9) 5 (55.6) 4 (44.4) 0.07
Active cancer 6 (5.9) 2 (33.3) 4 (66.7) 0.003
Metformin 20 (19.8) 14 (70) 6 (30) 0.2
Insulin 7 (6.9) 4 (57.1) 3 (42.9) 0.113
Incretin‑based antidiabetics 4 (4) 2 (50) 2 (50) 0.12
Chemotherapeutics 6 (6) 5 (66.7) 2 (33.3) 0.4
Steroid therapy 5 (5) 3 (60) 2 (40) 0.25

Vital findings (median/IQR)
Body temperature (celsius) 36.6 (1.13) 36.6 (1.2) 36.5 (0.92) 0.33
Pulse oximetry (%) 97 (3) 97 (2) 95 (4) 0.015
Pulse rate (/min) 83.5 (25) 83 (25) 87 (44) 0.63
Respiratory rate (/min) 20 (4) 18 (2) 20.5 (4) 0.001
Systolic blood pressure (mmHg) 130 (24) 130 (24) 131.5 (43) 0.75

Symptoms on admission
Fever 12 (11.9) 6 (50) 6 (50) 0.005
Dyspnea 4 (4) 1 (25) 3 (75) 0.005
Fatigue 15 (14.9) 10 (66.7) 5 (33.3) 0.15
Abdominal pain 100 (99) 80 (80) 20 (20) 0.62
Back pain 43 (42.6) 33 (76.7) 10 (23.3) 0.45
Nausea 60 (59.4) 47 (46.5) 13 (21.7) 0.57
Anorexia 24 (23.8) 18 (75) 6 (25) 0.47

Severity scores (median/IQR)
Ranson’s criteria (on admission) 1 (2) 1 (2) 1 (2.5) 0.625
Modified Glasgow criteria 2 (2) 1 (2) 2.5 (2.5) 0.005
BISAP score 1 (1) 1 (1) 2 (2) 0.002
Atlanta severity

Mild 95 (94.1) 77 (81.1) 18 (18.9) 0.53
Moderate 4 (4) 3 (75) 1 (25)
Severe 2 (2) 1 (50) 1 (50)

Local complications
Acute pancreatic fluid collection 61 (60.4) 50 (82) 11 (18) 0.6
Acute necrotic collection 5 (5) 3 (60) 2 (40) 0.26

Contd...
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Among these, BISAP provided balanced performance, 
with higher precision and an F1 score indicating 
reliable prediction (AUC = 0.70, F1 = 0.44, and 
recall = 0.85). The modified Glasgow criteria had the 
highest recall (AUC = 0.70, F1 = 0.38, and recall = 0.95) 
but reduced precision. Ranson’s criteria were the 
least effective predictor (AUC = 0.53, F1 = 0.42, and 
recall = 0.39). Receiver operating characteristic (ROC) 
curve analysis showed that both ML models significantly 
outperformed traditional scoring systems [Figure 2]. 
SHAP plots highlighted lactate, albumin, and glucose 
levels as the top contributors to the models’ predictive 
power [Figure 3].

Discussion

This study demonstrates that ML algorithms significantly 
outperform traditional clinical scoring systems in 
predicting outcomes in AP, particularly in the fast‑paced 
environment of emergency medicine, where rapid 
decision‑making is critical. As a result of the current 
study, predictors that provide more successful results 
than traditional scoring systems in predicting outcomes 
such as intensive care hospitalization and death 

associated with AP were identified. These predictors 
can easily determine the intensive care requirements 
and mortality risks of AP in the emergency department 
in the early period.

Traditional clinical scores, inherently, exhibit more 
rigid, angular ROC curves, reflecting their limited, 
less‑nuanced nature. This characteristic indicates the 
granularity and lower resolution inherent in traditional 
scores, which rely on a small number of ordinal points, 
thus relying on those may lead to oversimplified 
judgments.

While traditional scoring systems like Ranson’s criteria 
are still valued for their simplicity, they are less practical 
in emergency settings due to requirements such as the 
48‑h data collection period. This delay hinders their 
predictive accuracy when timely decisions are necessary. 
With the reliance on data that may not be immediately 
available, such as fluid sequestration over 48 h, their 
predictive performance was still shown to be inferior 
to APACHE‑II and BISAP.[11] In our study, we were 
unable to grasp its full performance as we were limited 
by the lack of certain 48‑h data points, such as fluid 
sequestration and base deficit. Similarly, the modified 
Glasgow criteria, which rely on capturing the worst 
data points within the first 48 h, present challenges in 
emergency settings where comprehensive data flow may 
not be available.[1,12]

BISAP, developed and validated in large cohorts, 
demonstrated a more balanced performance in our 
study, and it effectively predicts severity, particularly in 
early‑stage predictions of organ failure and in‑hospital 
mortality, despite its simplicity.[7,13] However, recent 
studies suggest that BISAP may underperform compared 
to newer scoring systems like the WL and the Chinese 
Simple Scoring System score.[14]

Our analysis highlights the importance of BUN as a 
predictor of AP severity. BUN, a key component of both 
BISAP and Glasgow scores, consistently correlates with 
poor outcomes, reflecting critical factors such as kidney 
perfusion, plasma volume, and catabolic processes.[15] 
Serum albumin levels, another significant feature identified 
by our ML models, are associated with nutritional status, 
inflammation, and capillary permeability, all influencing 

Table 1: Contd...
Total, n (%) No event, n (%) Adverse event, n (%) P

Pseudocysts 9 (8.9) 7 (77.8) 2 (22.2) 0.85
Walled of necrosis 5 (5) 3 (60) 2 (40) 0.26

Prognosis
Exitus 5 (5) NA NA NA
Need for intensive care unite 19 (18.9) NA NA NA

IQR: Interquartile range, CT: Computed tomography, BISAP: Bedside Index of Severity in Acute Pancreatitis, NA: Not available

Figure 3: SHapley Additive exPlanations plots of the top five ranking features 
in random forest and XGBoost models. SHAP: SHapley Additive exPlanations, 

lac: Lactate, alb: Albumin, bun: Blood urea nitrogen
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AP outcomes. It was demonstrated that albumin with 
BUN correlates best with oxidative stress significantly 
in AP patients.[16] Low albumin levels can also indicate 
poor nutritional status, increased catabolism, heightened 
inflammation, and reduced hepatic albumin synthesis.[17]

Serum lactate, a marker of tissue hypoxia, also emerged 
as a top predictor in our study. Elevated lactate levels 
often signal severe disease or complications like 
pancreatic necrosis.[18] However, the most striking feature 
might be serum glucose levels, a component of Ranson’s 

Table 2: Laboratory values of the cohort stratified by outcome group
Total No event Event P

Complete blood count (median/IQR)
Hemoglobin (g/dL) 13.8 (2.9) 13.9 (2.85) 13.5 (3.8) 0.67
Hematocrit (%) 40.9 (7.95) 41 (7.25) 40.55 (13) 0.56
Hematocrit change over 48 h (%) −6.25 (9.74) −6.24 (8.84) −6.64 (15.84) 0.74
Leukocyte (/mm3) 10,100 (4250) 10,100 (4100) 10,100 (5100) 0.7
Neutrophil (/mm3) 7800 (4500) 7790 (4555) 7825 (5090) 0.68
Lymphocyte (/mm3) 1300 (1005) 1400 (1065) 1200 (975) 0.14
Thrombocytes (×109/L) 235,782 (90,000) 240,000 (8600) 223,500 (120,500) 0.8

Biochemistry (median/IQR)
BUN (mg/dL) 14 (6.77) 13.51 (6.43) 15.61 (13.8) 0.06
Creatinine (mg/dL) 0.72 (0.3) 0.7 (0.28) 0.76 (0.93) 0.57
Sodium (mEq/L) 136 (5) 136 (5) 134.5 (5) 0.18
Potassium (mEq/L) 3.92 (0.48) 3.92 (0.46) 4.04 (1.56) 0.27
Chloride (mEq/L) 101 (6) 102 (7) 100 (6.75) 0.11
Calcium (mEq/L) 9.38 (0.7) 9.37 (0.64) 9.38 (0.79) 0.34
Calcium change over 48 h (%) −6.8 (6.81) −6.8 (6.66) −7.4 (9.92) 0.36
Phosphate 3.24 (0.86) 3.24 (0.88) 3.23 (1.2) 0.8
Albumin (mg/dL) 4.04 (0.59) 4.06 (0.51) 3.72 (0.99) 0.08
Glucose (mg/dL) 126 (78) 119 (68) 156 (98.75) 0.01
Uric acid (mg/dL) 5.2 (2.6) 5.19 (2.23) 5.22 (3.28) 0.9
ALT (U/L) 77 (248) 77 (253.5) 62 (247.25) 0.84
AST (U/L) 127 (295) 130 (290) 95 (484.25) 0.94
AST change over 48 h (%) −26.19 (44.16) −27.58 (41.71) −22.7 (60.4) 0.8
ALP (U/L) 126 (141) 126 (143) 127.5 (173) 0.76
ALP change over 48 h (%) −11.42 (17.65) −11.68 (17.04) −9.45 (20.45) 0.73
GGT (U/L) 181.5 (475) 212.5 (489.5) 108.5 (417.25) 0.65
GGT change over 48 h (%) −13.15 (24.26) −11.52 (23.21) −16.48 (28.99) 0.65
LDH (U/L) 259 (287) 259 (287) 268.75 (788) 0.53
Troponin (ng/mL) 3.4 (3.9) 4.2 (7.9) 7.3 (21.2) 0.03
C‑reactive protein (mg/dL) 8.16 (9.95) 8.38 (10.3) 7.27 (12) 0.54
Procalcitonin (µ/L) 0.22 (4.1) 0.19 (1.6) 0.29 (6.62) 0.33
D‑dimer (ng/mL) 1.98 (3.32) 1.55 (3.36) 3.94 (4.36) 0.046

Blood gases (median/IQR)
pH 7.4 (0.04) 7.4 (0.04) 7.41 (0.1) 0.96
pO2 65 (16.6) 65 (16.45) 57.9 (20.35) 0.04
pCO2 39.6 (6.9) 40.52 (5.8) 37.3 (9.5) 0.04
cHCO3 23.5 (2.95) 23.65 (2.75) 22.3 (3.5) 0.038
Lactate 1.72 (1.16) 1.67 (0.94) 2.15 (1.07) 0.005
Base deficit −0.67 (6.04) −0.1 (5.61) −1.4 (7.76) 0.18

Pancreatic enzymes and their trajectory indicators (median/IQR)
Amylase 699 (1368) 611 (1221.5) 892.5 (1273.5) 0.2
Amylase change (%) −68.96 (46) −68.96 (51) −69.64 (34) 0.98
Amylase ARV 468 (1224.5) 399 (971.5) 609 (1247) 0.27
Pancreatic amylase 506 (962) 474 (940) 643 (847) 0.36
Pancreatic amylase change (%) −74.32 (49) −75.87 (50) −71.13 (48) 0.74
Pancreatic amylase ARV 341 (843.5) 335 (835) 487 (845) 0.77
Lipase 1526 (2577.5) 1404 (3038.5) 2060.5 (1682) 0.66
Lipase change (%) −84.26 (45) −83.22 (59) −86.43 (28) 0.78
Lipase ARV 1021 (2584) 789 (2762.5) 1629.5 (1831.5) 0.76

ALT: Alanine transaminase, AST: Aspartate transaminase, ALP: Alkaline phosphatase, ARV: Average real variability, GGT: Gamma‑glutamyl transferase, 
LDH: Lactate dehydrogenase, IQR: Interquartile range, BUN: Blood urea nitrogen
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criteria which illustrates a strong linear relationship with 
adverse events. Elevated glucose levels may not only 
reflect poor metabolic control, often due to pre‑existing 
diabetes, and higher inflammatory stress but also 
contribute to the severity by promoting oxidative stress 
and tissue damage, creating a cyclical “chicken‑and‑egg” 
scenario.[19]

This study adds to the growing body of research 
implementing ML algorithms for AP severity prediction. 
A XGB‑based model, trained on patients from emergency 
and ward data, was demonstrated to predict severe 
AP with a significantly higher precision and accuracy, 
compared with BISAP and HAPS scores.[20] In one study, 
ML was implemented to predict acute kidney injury 
in AP patients, XGB performed best, though RF also 
showed strong area under the ROC values.[16] A large 
study using publicly available databases augmented with 
synthetic data found RF to be the most effective in many 
scenarios.[21] Another observational study highlighted 
XGB’s superior performance, identifying glucose and 
albumin as key features, though it incorporated CTSI 
into the model, which may limit its applicability.[22] A 
systematic review further confirmed that ML models 
often surpass traditional scores in classification tasks 
for AP.[10]

Limitations
Our study is inherently limited by its retrospective 
design, single‑center dataset, and relatively small sample 
size, which may affect the generalizability of the findings. 
In addition, the absence of complete 48‑h data hindered 
our ability to fully calculate Ranson’s criteria and reliably 
assess the Glasgow criteria, potentially underestimating 
their predictive performance.

While our study demonstrates the potential of ML 
models to predict adverse outcomes in AP, the 
generalizability of the findings may be limited due to 
the single‑center dataset and the relatively small sample 
size. Future studies with larger, multicenter datasets and 
prospective designs are needed to validate these findings 
and explore the potential of ML algorithms in broader 
clinical settings.

Conclusion

The ML models, particularly RF, significantly 
outperformed traditional clinical scores in predicting 
adverse outcomes in AP. While BISAP and modified 
Glasgow showed some utility, their overall effectiveness 
was lower, particularly compared to the ML approaches. 
These findings suggest that integrating advanced ML 
models into clinical practice could enhance the accuracy 
and reliability of predicting adverse outcomes in AP.

At last, “lactate,” “glucose,” “BUN,” and “age” 
predictors that evaluate the prognosis of AP much more 
successfully than traditional scoring methods can be used 
in emergency departments.
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